DOE scientists deploy creativity, speed to disrupt COVID-19

In early 2020, when the novel coronavirus was gaining momentum but had not yet been named a pandemic, computational chemist Marti Head of Oak Ridge National Laboratory – along with scientists and researchers around the globe – abruptly switched her focus to the fight against COVID-19. (See the video.)

The world was struggling to understand this new virus known as severe acute respiratory syndrome coronavirus 2, or SARS-CoV-2. But Head and others already knew that defeating such a highly transmissible pathogen was going to require a multi-pronged approach, including vaccines and multiple drug therapies.

As the spread of COVID was ramping up in 2020, the Department of Energy launched the National Virtual Biotechnology Laboratory, or NVBL, program with funding from the U.S. government’s CARES Act and began shoring up teams from across DOE’s national laboratory system. Molecular Design for Medical Therapeutics is one of the NVBL program’s teams. Led by Head, the group leverages deep knowledge and expert skills in artificial intelligence and computational screening techniques used for early stage biomedical research. In the past, team scientists have, among other projects, studied targets for more effective antibiotics and treatments for cancer.

Head joined ORNL in February 2018 from GlaxoSmithKline initially to lead the lab’s Joint Institute for Biological Sciences, a collaboration with the University of Tennessee. 

When the nation sounded the alarm on COVID-19, she drew upon her decades of pharmaceutical research and drug development experience in computer-aided drug discovery to help DOE pull together a dream team of molecular biophysicists, computational biologists, chemists and others.

The DOE NVBL molecular design team surveyed the larger biomedical research landscape. ORNL along with DOE national labs Sandia, Lawrence Livermore, SLAC National Accelerator Laboratory, Lawrence Berkeley, Pacific Northwest, Argonne and Brookhaven are using artificial intelligence and computational screening techniques – in combination with experimental validation – to identify and design drug therapies to target the SARS-CoV-2 virus.